. Technical Report
> .

CMU/SEI-90-TR-23

AD-A235 510 ESD-90-TR-224
LT -

'Y —=— Software Engineering Institute

Transaction-Oriented
Configuration Management:

S) A Case Study D T l C

. ELECTE
Peter Feiler MAY2 3]991
Grace Downey

November 1990

. mmruuunmnmwumu P22 960

The following statement of assurance 's more than a statement required 1o comply with the federal law This is a sincere statement by the unwversity to assure that all
people are included in the diversity which makes Carnegie Mellon an exciting place Carnegie Mellon wishes to include people withoul regard to race. color, nationa!
ongin sex. handicap. religion. creed. ancestry. bekel. age. veteran status or sexual grentat.aon

Carnegie Mellon University does not discnminate and Carnegie Mellon University is reguired not to discriminate in admissions and empioyment on the basts of race,
color natonal ongin. sex or handicap in wiolation of Title VI of the Civil Rights Act of 1964. Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehrabitahion Act of 1973 or other lederal. state. or local laws or executive orders in additon, Carnegre Melion does not discrimnate in admissions and employment on
tre bas's of rebkgion creed ancestry belief. age veteran status or sexual onentaton i viokation of any tederal, state, or local laws or execulive orders Inquines concern-
ng apphcaton of this policy should be directed to the Provost. Carnegie Mellon Universily 5000 Forbes Avenue. Pitisburgh PA 15213, telephone (412) 268-6684 or the
vica Presciant ‘or Errofment Carnegie Mellon Uinwersity 5000 Farbes Avenue, Pittshurgh, PA 15213 1etephone (412} 268-2056

Technical Report

CMU/SEI-90-TR-23
.ESD-90-TR-224
November 1990

Transaction-Oriented

Configuration Management:
A Case Study

Peter Feiler
Grace Downey

Software Development Environments Project

¢ e e e e

soaeasioa For
;| #ILT GRARI

i DTIC TaB 0
Ungnneounged []_
Justirication

By
_Distribution/

Availablility Ccdes
§ 'vauti'nndYor
Dist | OGpectal

ia-\'é 1

o e o Ve e e i

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the
SE! Joint Program Office

ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

/" JOHN S. HERMAN, Capt, USAF
(/ SEI Joint Program Office
/

®
o
This work is sponsored by the U.S. Department of Defense.
Copyright @ 1990 by Carnegie Melion University.
®

This document is available through the Defense Technical Information Center. DTIC provides access to and transter of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering, o
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way 1o infringe on the rights of the trademark holder.

Table of Contents

1. Introduction

2. Software Configuration Management
2.1. Definition and Focus
2.2. Common Practice in SCM Supponrt
2.3. Advances ‘
2.3.1. Configurations as Managed Objects
2.3.2. Transparent Access to Repository
2.3.3. Transaction-Style Software Evolution

3. Network Software Environment
3.1. The Roles of an NSE Environment
3.1.1. Repository of Objects
3.1.2. Recording the Development Path
3.1.3. Transparently Accessible Configurations
3.1.4. Workspace

4. Support for Evolution by Team
4.1. Workspace Management
4.2. Single and Multiple Development Paths
4.3. Team Support

5. Support for Evolution of Software Families
5.1. Variants
5.2. Primary Development and Adaptation
5.3. Parallel Development for Different Family Members
5.4. Composition

6. Support for Distributed and Heterogeneous Development
6.1. Distributed Development on Suns
6.1.1. Homogeneous Sun Network
6.1.2. Heterogeneous Sun Network

6.2. Development on a Heterogeneous Network
6.2.1. Cross-Development on Suns
6.2.2. Remote Processing on Target Machines
6.2.3. Remote Development

7. Conclusion
Appendix A. Glossary of Terms

References

WW W NOOOO Hh WW =

CMU/SEF90-TR-23

] CMU/SE90-TR-23

—4—

List of Figures

Figure 2-1:
Figure 2-2:
Figure 3-1:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 6-1:

The Controlling Disciplines

Typical Directory Hierarchy Using SCCS
NSE Environment and Directory Hierarchy
Development Path of a Configuration
Development Subpath

Development through Two Paths
Workspaces in NSE

Release of a Developer's Changes

Failed Release of a Developer's Changes
Merge and Release of Changes

Source and Object Management

Conflict in Machine Dependent Code
Merge of Machine Dependent Code

Major and Dependent Development
Directory Structure for Multi-Platform Source
Parallel Muiti-Platform Development
System Broken into Subsystems
Management of System Composition
Family of Executable Tool Sets

11
14
15
16
17
18
19
19
23
24
25
26
27
28
30
32
35

CMU/SEI-90-TR-23

Transaction-driented
Configuration Management:
A Case Study

Abstract: Software configuration management (SCM) is a key element of the
software development process. A number of new configuration management
techniques in commercial SCM tools and environments with SCM capabilities
have been observed. This report illustrates some of the advances in SCM con-
cepts by example of a particular commercial system: the Sun Network Software
Environment (NSE). NSE embodies a transaction model of configuration man-
agement. In order to demonstrate the capabilities and limitations of the trans-
action model, NSE is applied to three problem areas for configuration manage-
ment: adaptation for parallel development and team support, development and
maintenance in software families and development in a distributed and heteroge-
neous network.

1. Introduction

Configuration management is an integral part of the software development process. SCM
tools and capabilities in a software development environment or environment framework au-
tomate certain elements of the software process. The functions provided by an environment
may be low-level. To be useful to developers a set of conventions or procedures must
reflect a particular desired SCM method. A number of commercial systems have become
available offering higher-level SCM functions such as Rational's Ada Development
Environment [2], Apollo’s Domain Software Engineering Environment [3], BiiN SMS [6], and
Software Maintenance and Development Systems’ Aide-Ce-Camp [1]. On one hand, their
functions are closer to the desired support of a particular SCM method, by automating the
conventions and procedures to be adhered to. On the other hand, the functions may restrict
the range of development processes which can be supported.

The report is organized as follows. Section 2 defines the scope of SCM as a developer
support function and states common practice. It concludes with a description of SCM ad-
vances, including a description of the transaction model to control software evolution. Sec-
tion 3 provides the properties and functionality of NSE that are important to SCM support.
Sun’s NSE is described in this report because it embodies several advances that can be
observed in a number of recently released commercial systems. One of the advances is
NSE'’s use of a long-term transaction model as its primary SCM concept. We are not critiqu-
ing the implementation of the model as found in Version 1.2 of NSE, but using NSE as a
vehicle to probe the transaction model and other advances. We explore how this advance
impacts three common development situations and illustrate the benefits and limitations of
the transaction model. Section 4 describes how the effort of individual team members is
coordinated. Section 5 explores different ways to support the development of software
products that share portions of their source code. Section 6 describes how to manage soft-
ware development taking place in a heterogeneous network of workstations. The report

"CMU/SEI-90-TR-23 1

concludes with a summary of the benefits and limitations seen in the SCM advances found
in NSE. There is also a glossary of terms provided as Appendix A. The glossary defines
software configuration management terms and describes the function of some NSE specific
commands.

2 CMU/SEI90-TR-23

2. Softwére Configuration Management

The term software configuration management is subject to a wide range of interpretation. In
order to reduce misunderstandings, we first define SCM and describe the particular focus
we have taken in this report. Then, we summarize common practice in SCM developer
support. Section 2.3 describes new configuration management techniques found in com-
mercially available environments and frameworks.

2.1. Definition and Focus

Software configuration management can be defined as the discipline of controlling the
evolution of software. As illustrated in Figure 2-1, SCM is one of the control disciplines
complementing management disciplines and development disciplines in producing and
maintaining quality software products. It is one of the key elements of the software process.
SCM provides stability and consistency by tracking and recording all changes, by uniquely
identifying versions and configurations, and by managing change. SCM affects the other
disciplines as it provides the necessary stable context in which to achieve valid measure-
ments and results.

Management Disciplines

Controlling Disciplines Development Disciplines

+ Software Quality

e S ificati
Assurance pec en

Product

Integrity « Design

* Software Configuration
Management . Code
* Independent Verification

and Validation e Test

Figure 2-1: The Controlling Disciplines

Software configuration management has a number of facets; some emphasize the manage-
ment aspect of software development, while others focus on technical aspects. Examples of
SCM facets with management emphasis are:

» Change management: initiation, evaluation, and approval of change through
mechanisms of change requests and change control boards.

» Release management: identification and packaging of releases, tracking of cus-
tomer installations, relating problem reports and fixes to releases.

e Corporate product management: identification and tracking of product
spectrum; impact analysis of new or upgraded products and components on
spectrum. .

CMU/SEI-90-TR-23 3

e Contract development management: identification and tracking of deliverables
in contracted software development.

e Acquisition management: acquisition of off-the-shelf products and their
upgrades from multiple vendors.

The technical aspects of SCM include:

¢ Developer support: storage of and access to actual product components, sup-
port for product composition and manufacturing, coordination of concurrent
change activity.

o Customer adaptation: adaptation to computing environment at customer site,
and tailoring organizational and project needs and individual preferences; man-
agement of product configuration refinements.

¢ Installation management: management of installed product configurations in-
cluding vendor upgrades, co-residence of multiple versions, multiplicity of instal-
lations, and roll-back to old configurations.

o Dynamic reconfiguration: management of incremental update to system config-
urations, especially in non-stop systems.

In this report we focus on the developer-support facet of SCM for two reasons. First, devel-
opment and maintenance of software artifacts are performed by a large part of project per-
sonnel. However, SCM is often perceived by developers as intrusive and practiced as an
afterthought. As a management-oriented control discipline it places additional burden on
developers with little apparent benefit. This intrusion may be due to a rigid SCM method
that does not adapt to desirable variations in control as more of the developers’ activities are
included. [t may also be due to inappropriate tool support by offering either inadequate
functionality to support the SCM method or insufficient performance for frequently executed
operations that intuitively seem simple. Thus, tool support for SCM in this area can poten-
tially improve productivity of developers, leading us to the second reason for our focus. In
the last several years many commercial software development environments and SCM tools
have become available with new services in SCM developer support. These new services
have made advances in better supporting software development and reducing the intrusion
of SCM tools and the reluctance of developers to use them in their day-to-day work.

2.2. Common Practice in SCM Support

In order to discuss the advances found in SCM support, it is first necessary to outline the
current practice. Common practice in SCM support provides three types of tools. The first
is a record keeping tool to track information about the product under configuration manage-
ment. It often is a database application, that encodes a well-defined SCM process and
method, which previously was enacted on paper. Identification, characteristics, and devel-
opment history of product artifacts, as well as artifacts of the change process such as prob-
lem reports, change requests, and their relationships to the product are recorded on forms
and stored in the database. Report generation capabilities are used to provide project
status and accounting information.

3 CMU/SEI-90-TR-23

The second type of tool is a software artifact filing capability, referred to as software repos-
itory or software library. This is the place where the actual artifacts (in their online form) are
kept. Typically, its functions are modeled after those of a librarian—the gatekeeper of proj-
ect products. The term development repository reflects the more passive role as an infor-
mation sink. Product artifacts are created and modified outside the realm of this tool. When
artifacts are deemed to have reached a certain state of maturity (e.g., handing off to quality
assurance or the customer), they are passed into the repository for preservation and record
keeping. Emphasis is on enforcement of control and authorization of change. Software
repositories are typically used in conjunction with record keeping tools described above. As
a result, retrieval of artifacts is performed relatively infrequently—usually for the purpose of
preparing a release or for establishing a baseline for further or new development.

Another aspect of the second type of tool is the software library. A library plays a more
interactive role in software development. It is intended to be the primary source of artifacts
to be evolved (i.e., retrieval of artifacts is a common operation). Tools in the role of software
library often are limited to managing “"source code" artifacts, restricting the artifacts to be text
files. Control tends to be limited to coordination functions through a check-out/check-in
protocol of individual artifacts. A historical record of artifacts is maintained in the form of
sequential revisions and through branches in the revision graph. These branches can, by
convention, reflect variants of the artifact, separate development activity of different artifact
releases, or concurrent change. Similar to the repository, the library has a flat name space,
that is, product structures have to be recorded through naming conventions or through
. auxiliary record keeping. Because artifacts must be explicitly retrieved before they can be
accessed and retrieval can take a considerable amount of time, developers tend to maintain
copies of the artifacts in their work area—introducing potential inconsistencies, as it is the
developers’ responsibility to keep the work area up-to-date with the library.

The third type of tool is a facility for automating the manufacture of software (i.e., system
build). System build automates the derivation of artifacts such as machine code from others
by application of tools such as compilers. It does so based on a description of the compo-
nents of a system, of the system structure based on these components, and of depend-
encies between components. Language-independent system build tools tend to limit their
dependency records to cases where one component includes the contents of another en-
tirely before processing (e.g., "include” files in C). Typically, existence of files and file dates
are used to determine whether derived artifacts need to be generated. To generate a de-
rived artifact, predefined or user-specified build rules (i.e., tool invocation templates) are
elaborated and executed.

In common practice, the three types of tools: record keeper, repository (or library) and build,
are usually implemented as three independent services. For example, system build tools
have little awareness of a software repository, that is, they assume that all artifacts are avail-
able in the file system. The following subsection focuses on changes in repository or library
support that represent advances in software development support.

CMU/SEI-90-TR-23 5

2.3. Advances

The software configuration management systems found in new software development envi-
ronments are supporting more advanced concepts and developer interaction. Repositories
can capture more than a collection of files that are processed into a software system.
Repositories are becoming a place that provides context in which to process source rather
than a library of source versions. SCM systems are also supporting methods to evolve a
software configuration from one version to the next. Sections 2.3.1 through 2.3.3 explore
each of these changes in support in more detail.

2.3.1. Configurations as Managed Objects

In a traditional repository model for source code, such as the Revision Control System
(RCS) or Source Code Control System (SCCS), versions of individual source code files are
managed by numbering them and placing them in an SCCS or RCS subdirectory. Each
directory in the UNIX directcry hierarchy containing the source has its own RCS or SCCS
subdirectory.” Figure 2-2 depicts the typical scheme for structuring a directory hierarchy
when using SCCS. Directory names are shown with a leading /" and underlined. Direct-
ories may contain ules and other directories. Figure 2-2 shows files contained in a directory
by listing them beneath the directory name. Directories are shown to contain other direct-
ories by drawing an arc to the contained directory’s name. This depicted solution is limiting,
in that it is unable to capture a complete version of a configuration from one place in the
event of a system release. A configuration is the collection of all the sources that are com-
piled into one consistent executable. The system structure may be recorded in a descriptive
file, such as a Makefile. However, the descriptive file will only be treated as any other ar-
tifact. The repository, in this case a collection of SCCS subdirectories, has no knowledge of
the system structure.

An advance in newer SCM systems is the ability to represent system structure. The SCM
system captures a collection of files as a composite. The configuration is explicitly sup-
ported as an object that can have a series of versions. A given version of a configuration
may contain source objects, derived objects, files containing build rules, documentation
sources, and a directory hierarchy. By capturing all the software artifacts as they exist in the
directory hierarchy the system structure is represented.

Another advantage to capturing more than source files, is that derived objects now come
under the control of the configuration management system. Configurations provide a con-
text in which individual files are modified, and derived objects are produced and stored in
this context.

2.3.2. Transparent Access to Repository

When an SCM system is based upon a software repository, the repository serves as a place
to store versions of the source code of the system. In this case a developer executes spe-
cific commands to preserve artifacts in the repository. When an SCM system is based on a
library, the library becomes the source of objects to be changed. The developer executes

6 CMU/SEI-40-TR-23

aketle .

Ourprogram
/ \ s. Makeﬂle
Makofllo Makeflle
bar.c back.c \ [sccs
s. Makofllo s.Makefile
bar.h s.bar.c back.h s.back.c
bar.o s.bar.h back.o s.back.h
baz.c s.baz.c front.c s.front.c
baz.o s.foo.c front.o s.In.c
foo.c s.foo.h in.c s.out.c
foo.h in.o
foo.0 out.c
subsysi.a out.o
subsys2.a

Figure 2-2: Typical Directory Hierarchy Using SCCS

- specific commands to populate his workspace with versions of objects which will be
changed. Once an object is changed it is returned to the library, where it is again available
to others. An SCM advance is the ability to provide direct access to the contents of the
repository itself. With this advance, a developer works in the repository changing files as
they exist there. By mapping a configuration of artifacts into the file system transparently,
the SCM system eliminates the need for moving artifacts in and out of the repository.

An additional advantage to this approach is that the repository can contain complete source
context for the derivation of the software system. If one source file depends on the
presence of another, both files will be available in the repository. A new version of a source
object is created only when a user indicates intent to modify the object. The entire configu-
ration need not be duplicated to supply the derivation context for a few changing files.

2.3.3. Transaction-Style Software Evolution

The transaction model of software evolution relies on the notion of a transaction as the basis
for managing change. The transaction model found in the context of configuration manage-
ment has similarities to the database transaction model. A configuration of software files
resides in a repository which is analogous to a database. A transaction begins with an in-
dication that objects in the repository are to be modified, and are locked to prevent concur-
rent modification. Changes are made to the files, the repository is updated and the files are
unlocked to allow subsequent modification. There are two differences in database trans-
actions and SCM transactions. First, a database transaction performs an update to stored
data, while an SCM transaction installs a version of data in the repository. Second, the
duration of a transaction as used in SCM is much longer than a transaction used to update a
database.

CMU/SEI-90-TR-23 7

It is possible to have parallel transactions in the SCM transaction model. A repository con-
tains an original baseline of the software artifacts. If there is no locking to prevent two or
more transactions from acquiring the same objects from the repository, then several simulta-
neous transactions may be created. Changes in each of the parallel transactions will be
isolated from each other and each transaction can contain enough context to fully process
the changes. If parallel transactions are permitted, then there is a mechanism to merge
changes that could occur on the same object. The first completed transaction returns its
version of the changed objects to the repository. When a parallel transaction attempts to
return the same objects to the repository, it fails. It must update to the latest version of
objects from the repository, and merge and test its changes to the latest version of objects.
In order to prevent the race condition, where a transaction can never complete because the
repository changes too quickly, there is a mechanism to lock the repository from any further
change until the given transaction can return its changes.

An additional aspect of the transaction model is support for nested transactions. A trans-
action starts by acquiring objects from the repository. In turn, a sub-transaction may be
created by acquiring objects from the initial transaction. The sub-transaction will return its
modified objects to its parent (i.e., its enclosing transaction). When a sub-transaction
returns its modified objects to its parent, the scope of visibility for those objects widens.
They become accessible by any parailel sub-transactions of the parent. An SCM system
that supports nested transactions maintains the relationships between the transactions. A
given transaction can be queried to determine its parent and any child transactions it has
spawned. A transaction may migrate its changes only to its parent or its children.

A final feature of the transaction model is the ability to take snapshots of the contents of a
transaction at any time. The snapshot becomes an immutable and retrievable version of the
configuration of objects. This creates a linear history of the objects contained in a trans-
action. It allows a developer to preserve a version of the configuration without having to
change its scope of visibility by returning the objects to the parent transaction. When a
series of changes is returned to the enclosing transaction, either the series may be in-
dividually stored for retrieval or the series may be compressed and stored as one atomic
change.

In a pure transaction model for SCM, the repository is implemented as a non-terminating
transaction. It captures revisions of the configuration it contains through the local history
mechanism. A new revision is created in the non-terminating transaction or repository by -
each of its completed sub-transactions. In this manner a linear history of the configuration is
maintained in the non-terminating transaction. '

Transactions can be used to capture and represent software configuration evolution. Simul-
taneous change of a configuration can be afforded by allowing simultaneous transactions
with a merge mechanism. The scope of visibility of a change can be controlled through a
series of nested transactions. A linear history of the change in a configuration can be main-
tained through a snapshot capability local to one transaction. This combination of features
represents a configuration management advance that has implications for how software may
be controlled during its life cycle.

8 CMU'SEI-90-TR-23

3. Network Software Environment

The Network Software Environment, commercially available and supported by Sun
Microsystems, Inc., provides software evolution support for single developers and groups of
developers. It is an example of a commercial system that exhibits and combines the ad-
vances explained in Section 2.3. The following sections describe how NSE Version 1.2
implements the advances and introduces NSE commands and objects.

3.1. The Roles of an NSE Environment

A key concept to the software configuration management that NSE provides is the
environment. The environment serves as a repository, a workspace and it offers scoping
and coordination of change through a transaction mechanism. As a repository it offers the
ability to capture derived objects and the UNIX directory structure as well as source code. It
also captures build and dependency information, and logical structure. Finally, an environ-
ment serves to capture versions of the entire configuration of objects.

3.1.1. Repository of Objects

NSE places an entire development directory tree and all the files it contains under configu-
ration management control in an environment. Instead of capturing versions of all the indi-
vidual source files independently, it captures the aggregate of all the files in the configu-
ration.

In addition to maintaining the system structure present in the UNIX directory structure, NSE
tracks the files that are used to build an executable. It also tracks the cases where one
source file may depend on the presence of a separate source file. NSE uses Makefile infor-
mation to distinguish between source files and derived files, and manages the relationship
between them.

A third mechanism allows logical system structures to be expressed independently of the
other system and build structures. Hierarchies are expressed through components and can
contain components and other logical objects. The basic logical objects are files referring to
UNIX files and targets referring to composition structures in Makefiles. For example, a com-
pilation system consists of a compiler, debugger and linker; the source files for these may all
reside in the same UNIX directory. However it is possible to group source files as members
of components. The compiler, debugger and linker would each be represented as a compo-
nent. The logical system structure is maintained in an environment.

An environment can capture the directory structure used to store the source and derived
objects of a system, the build structure and the logical structure.

CMU/SEI-90-TR-23 9

3.1.2. Recording the Development Path

Each environment also captures a series of "snapshots” of its contents: the source and de-
rived objects, UNIX directory structure, build structure and logical structure. All the snap-
shots in the sequence can be named and are immutable, that is, they cannot be changed.
Users make a particular version of the environment's contents accessible in the file system
by accessing an environment and specifying a particular configuration version or NSE
revision. By default, the last configuration version is made accessible, and its contents can
be changed. Since a particular change often spans an entire series of files, it is viewed as
an evolution of the configuration, rather than discrete changes to distinct source files. In
Figure 3-1, the series of boxes can all be referenced through one NSE environment. A
given box drawn around the UNIX directory structure represents one version of the configu-
ration. A sequence of i""#se boxes depicts a sequence of versions in a development path.

As a software configuration evolves, often source code files are renamed. NSE provides the
ability to rename files. The rename command associates the previous history of the file with
its new name. If the logical structure is revised during development, environments and
components may also be renamed. The renaming capability provides additional continuity
when a user wishes to examine the development path.

3.1.3. Transparently Accessible Configurations

The introduction of a new technology to the software development and maintenance proc-
ess is often frustrated by the human tendency to resist change. An important characteristic
of NSE is that it is transparent in the way in which a developer and tools interact with UNIX.
To access a configuration, a developer activates an environment, and connects to the di-
rectory hierarchy using the cd command. The contents of the configuration will appear just
as if it resided in the native UNIX file system. Thus an environment makes repository access
transparent. The repository or NSE environment is not a separate area from the workspace,
and objects are not moved in and out of the repository. Rather, a developer activates the
environment and can carry out changes, re-compilation and testing directly "in" the repos-

itory.

Once a developer's workspace is set up, work can proceed as if NSE were not there. NSE
intercepts commands to the UNiX file system, and directs them to the appropriate configu-
ration of file versions: A developer does not have to learn an extensive set of commands or
procedures to insure the selection of individual file versions which work together.

3.1.4. Workspace

While environments contain many objects and their relationships, environments in them-
selves are named entities that NSE tracks and manages through a scheme of nested trans-
actions. The nseenv create command provides a non-terminating transaction. The acquire
command is used to start a transaction to modify the contents of the non-terminating trans-
action. By allowing the creation of more than one sub-transaction, NSE allows a pattern of
optimistic or parallel development. A team of developers can spawn any number of copies
of a given environment. Each developer can work in a private copy and be isolated from

10 CMU. SEI-90-TR-23

Configuration
Revisions

subsys2.a

- source

Figure 3-1: NSE Environment and Directory Hierarchy

changes made by others, and can choose when to integrate with others’ changes. In this
manner an environment provides a scope to the effect of changes. Each child environment
or workspace retains the full range of commands for establishing a sequence of local revi-
sions, and may even spawn child environments of itself. NSE maintains the relationships
between the copies of environments, preventing uncontrolled change. It is always possible
to determine the baseline to which a change was made by looking to an environment's
parent. NSE also provides a paradigm supported by commands and interactive multi-
window merge tools to coordinate the diverse pieces of work from the child workspaces.

"CMU/SEI-90-TR-23 1

12

~CMU/SEI-90-TR-23

4. Support for Evolution by Team

The development and maintenance of software today is usually carried out by teams of pro-
grammers. The software configuration management advances as implemented in NSE
have implications for the way a team of developers can control change in a system com-
posed of many software artifacts. This section describes how the transaction model sup-
ports the creation of a developer's workspace, development paths and the coordination of
paraliel change.

4.1. Workspace Management

An NSE environment serves as a named, controlled workspace which can contain an entire
UNIX directory structure populated with source and derived objects. This provides an advan-
tage over development as often performed on UNIX, where a developer copies a set of the
sources into an arbitrary UNIX directory to make upgrades and modifications. The developer
may or may not merge his changes properly with others, or may even unwittingly overwrite
correct sections of code. '

A repository or initial environment is created by the bootstrap command. A developer can
activate this original environment, and perform useful work there. However, it is more ad-
vantageous to use the NSE’s transaction style mechanism for creating working copies of the
initial environment. Through the acquire command a user may create a child or
sub-environment of the original repository. The child environment contains a virtual copy of
everything or user-selected portions of what appears in the original repositury. The creation
of the child environment locks the original environment from any further changes carried on
within the original environment. The user can then activate the working copy, as a private
workspace. Here the developer can access files, make and test changes, without affecting
any other environment or workspace. A developer may activate or exit an environment at
any time; when activated, the environment presents the latest version of all of its contents in
the directory designated at the time the environment was created. The designated directory
is called the control point of the environment. Upon exiting, the contents of the environment
no longer appear under the control point.

An activated workspace may be shared by more than cne developer simultaneously. Their
work on source code is coordinated by the Version Control System (VCS), the NSE service
that locks and serially versions each source file. When a file is listed in a workspace, it is
only a virtual copy, made to appear as if actually there through NSE's Translucent File Ser-
vice. The contents of the file may be browsed or used as input to a tool. It is only when a
file is checked-out through VCS, that the user is provided with an actual copy for modifi-
cation. VCS provides ves checkout and ves checkin commands similar in operation to RCS
and SCCS. The ves checkout command locks a file for write access by one user within the
workspace. This VCS file lock is local to only the current activated workspace, and does not
affect the file as found in parent, child or sibling workspaces. Upon vcs checkin, a local
copy is frozen and stored within the workspace. vcs checkin also prompts the developer for

CMU/SEI-S0-TR-23 13

a comment about the change. Within the workspace, from that point onward, VCS is similar
to RCS and SCCS in that it uses a delta mechanism to store changes between successive
versions within a workspace. The delta mechanism has the limitation of only being useful in
dealing with textual files such as source code. An additional similarity to RCS and SCCS is
that a developer can list the comment log associated with a source file, and request previ-
ous versions of a checked-in file to become the current version.

4.2. Single and Multiple Development Paths

A workspace contains an entire configuration of source, derived objects and any additional
files a developer considers relevant. A development project can capture the evolution of the
configuration by taking a snapshot of the entire workspace with the preserve command.
Through successive applications of the preserve command the project creates a sequence
of revisions of the contents of a workspace. Preserve is available in two forms: named and
unnamed. In a series of unnamed revisions, only the latest is available for retrieval. A
named revision is not destroyed, and can still be accessed after subsequent revisions have
been made. When preserve is invoked, the user chooses a name and supplies it as a com-
mand parameter. The choice of names is left entirely to the user, and may reflect a revision
numbering scheme or a configuration characteristic. The sequence of revisions accessible
through an environment defines a development path for the configuration. Figure 4-1 depicts
a series of named revisions. The names for revisions in this example reflect a simple se-
quential numbering scheme.

(product
Makeflle <4—Revo
Ourprogram*
(aub (product g—Reov1
Makefile
Ourprogram*
(product <R
Makefile ov2
\ Ourprogram*
aub
(product <€— Rev3
named Makefile
revisions Ourprogram*
(aub current
Makefile working
Ourprogram* copy
ifubavat aubavezi <—

Figure 4-1: Development Path of a Configuration

14

CMU/SEI90-TR-23

It is often useful to maintain two versions of a system concurrently. For example, a field
release should be available to upgrade for quick response to customer error reports, while
in-house development continues on a more steady baseline. RCS supports branches in the
line of development in an individual file while NSE supports branches of the configuration.
At any time during development managed in an environment, a sub-environment may be
created to carry on a different branch of development as shown in Figure 4-2.

The semantics of the NSE parent-child relation require that for change to occur in the
parent, it must be Jlocked while it has a child environment. The locking of the parent
prevents a reconcile from the child environment overwriting changes made in the parent.
When the error corrections which were made in the child environment are transferred to the
major development branch in the parent, the environment must first be unlocked and the
changes may ge transferred using the reconcile command.

Another option for providing parallel development paths is to create two children from the
same parent environment, each to represent a separate branch of development. One child
can carry on the implementation of fixes for error reports, the other child can carry on the
business of planned upgrades.

Major Development Branch

Developmenti1.0
L\ Release1.0
Upgrade1.1
I Upgrade1.2
L Release2.0
Acquire
A />\
Reconcile
& Merge

Bugfix?t %

Bugfix2

Error Correction
Branch

Figure 4-2: Development Subpath

CMU/SEI-90-TR-23 15

Branches of the configuration may be created for the purpose of temporary concurrency.
The information contained in the separate branches may be merged later using some of
NSE's functionality. If two or more children were created the merge of changes from along
the independent branches can occur at agreed to intervals by executing the reconcile com-
mand from each branch as depicted in Figure 4-3.

' Release1.0 | /\ I
= A\

NSRS ION

Release2.0 Development

Acquire />\ Branch

paN
2\

BugFix1 />\
BugFix2
Error Correction
Branch

Figure 4-3: Development through Two Paths

l Reconcile

it is also possible to achieve continued concurrency by never terminating the child environ-
ments as shown in Figures 4-2 and 4-3. However, the merge mechanisms may be used to
move shared changes at desired intervals between the various branches of development.

16 CMU/SEI-90-TR-23

4.3. Team Support

Once an environment has been created manually or through the use of the bootstrap com-
mand, child environments may be established for individual developers to work in through
the acquire command (see Figure 4-4). The acquire command creates a duplicate, or a
duplicate of part of the contents of an environment in a child environment. A parent environ-
ment may have more than one child. The child environments can serve as private
workspaces for individual developers. A developer is able to place local changes back into
the parent environment through the reconcile command. This action serves to make the
changes immediately visible in the parent, and available to be moved to any other child envi-
ronment of the parent. A developer checks if any code has changed in the parent environ-
ment with the resync command. If the same object in the parent environment and child
environment has changed, then the resolve command can be invoked to aid in performing a
merge of the changes.

[product
Makefile
OQurprogram*

/ \ j@——==Public Area
{subsysi1 [subsys2

Acqulro/ \ Acquire
(product

Makefile Makeflle
Ourprogram* Ourprogram*
(subays1 /subsys2|| (subsysi [subsys2
Workspace Workspace
for Developer 1 for Developer 2

Figure 4-4: Workspaces in NSE

CMU/SEI-90-TR-23 17

The private workspaces provided by the NSE environment allow for parallel development by
a team of programmers through an optimistic change and merge scheme. A parent environ- o
ment can be viewed as a central repository where all teamwork will eventually be collected.
Each developer can have his own child environment, to make changes to and test, inde-
pendent of the work of others. As a developer completes a set of changes, the changes can
be moved to the parent environment with the reconcile command as shown in Figure 4-5.
When a second developer finishes and issues the reconcile command, it will fail if both de- e
velopers modified the same files. Figure 4-6 depicts how the second developer’'s work area
is automatically updated with the files containing the first developer's changes, and local
derived objects are marked as out of date. The second developer can use the resolve com-
mand to merge the conflicts between the later work, and the work submitted by the first
developer. The merged code can be compiled and tested, and then submitted to the central ()
repository through the reconcile command. Figure 4-7 depicts a merge of the first and sec-
ond developers’ changes and successful reconcile. This is referred to as optimistic devel-
opment, as concurrency is not prevented through a priori locking in the parent or team envi-
ronment. Child environments can be deleted as particular tasks are finished or remain as

permanent workspaces that are updated with changes from the parent as needed. ®
o
. (product |
(prodyct

reel /N

(subsys) [subsys2

. ®
{oo.c
foo.o
Reconcile
-« (produet ... [prodyct ®
. 1 . . 2
foo.c foo.c
foo.o foo.o
o
Developer 1 Developer 2
Figure 4-5: Release of a Developer's Changes
o
18 CMU/SEI-90-TR-23 °

_——

(product J
(product

7\

(subsysi /subsys2
foo.c: :
foo.o

.\ \
/N

[subsysi /[subsys2
fcm.l:1 '
foo.c

Developer 2
Figure 4-6: Failed Release of a Developer's Changes

(product
foo.c ' / \
foo.0 | foo.c | (subsys1 [subsvs2
foo.o 142
fcm.t:‘.2
foo.0

\ Successful Reconclle

AN

1 2
foo.c -foo.c

1+2
foo.c
1+2

foo.0

Developer 2

Figure 4-7: Merge and Release of Changes

CMU/SEI-90-TR-23 19

~ CMU/SEI-30-TR-23

5. Support for Evolution of Software Families

This section explores how well NSE supports the development and maintenance of a soft-
ware family. The term software family refers to a collection of programs with essentially the
same functionality. Members of the family may differ in alternative implementations of cer-
tain components or may represent adaptations to differences in the computing platform,
such as different window systems, operating systems, or different hardware. The software
may be maintained as a single set of source files, from which alternative executables are
generated, or as alternative source files, from which a particular family member is produced
by selection and composition.

The evolution of a software family is a challenging task. The family evolves as a system, i.e.,
new functionality may be added and improvements made, while old releases have to be
maintained. Members of the family may evolve in a variety of patterns, and changes hav~ to
be propagated and merged. In practice, development patterns range from maintaining a
family centrally from a single source, to development of a primary family member (e.g., for
an initial target) followed by adaptation for other members (e.g., porting to other targets),
and to independent development of different family members. In the former cases the
change process is fairly restricted, while in the latter case decentralized initiation of change
provides more autonomy, but requires stronger support for propagation and integration of
change.

The NSE concept of environment can be used in different roles to support evolution in a
software family. The commands which manage change and manipulate environments are
based on the notion of a transaction. Particularly, the acquisition of a child environment,
modification of code, and successful reconciliation of changes to a parent environment can
be viewed as a fransaction. Also, a transaction limits the scope of visibility of
changes—isolating others from local changes and being isolated from others’ changes. A
transaction has local memory (i.e., revisions of configurations can be locally preserved in a
linear history). The changes in a transaction are committed in an atomic operation to an
enclosing transaction. Non-terminating transactions play the role of a repository. Once the
work is completed it is committed from the workspace into an enclosing environment. Thus,
the environment in the role of a workspace acts as a transaction. In this section, we ex-
amine how NSE’s implementation of the transaction model lends itself to supporting the dif-
ferent development patterns encountered in the evolution of software families. We focus on
the capabilities and limitations of the transaction model to support different degrees of inde-
pendence for initiation of change in particular family members and propagation of change to
other family members. '

To illustrate the utility of environments and the transaction model, the following subsections
each present a possible scenario for managing change in a software family. Section 5.1
discusses development of the family from a single central location. Therefore, its focus is on
the ability of NSE to support multiple sets of derived objects (executables, and support both
single source and multiple source families). Section 5.2 examines support for the develop-
ment pattern of primary development on one family member and adaptation of code for

CMU/SEI-90-TR-23 21

other members based on the primary change. In this pattern, the flow of changes back to
the primary member is minimal. Section 5.3 describes NSE'’s ability to support the concur-
rent evolution of different family members and yet still share change among family mem-
bers. Finally, Section 5.4 assesses NSE's limitations in supporting the composition model. It
does so in the context of NSE's ability to support the creation of different family members by
selection of aiternative variants and versions of components comprising a system.

5.1. Variants

There are two different ways that variation in a software family occurs. The first occurs
when a single set of sources generates multiple sets of objects and executables. Either
several compilers are used to generate the sets of objects and executables, or switches
passed to the compiler on different builds result in different program behavior such as debug
or optimization switches. The second way that variation may be present occurs when differ-
ent sources are used to compose different versions of the executable. If a program is avail-
able to run on two different window management systems, the user interface portions will
have target-specific code that deals with each window manager. While the bulk of program
code must be maintained in parallel across both targets, there is a portion which is selected
at build time depending on the desired target.

If the members of a software family are to be developed or maintained in parallel, then the
build procedure for different members must be synchronized. For example, using Sun’'s
Network File Server, a Sun 3 and Sun 4 computer can share the same storage through the
network. By keeping a single set of sources, changes and upgrades can occur to both Sun
3 and Sun 4 versions simultaneously. Although the Sun 3 and Sun 4 versions of a program
share sources, the derived objects can not be accumulated in the same directories due to
the name clash of the two variants of the derived object from the same source. A common
solution is to construct a Makefile such that the compiler places each set of derived objects
into a designated directory through a parameterized pathname. Then the invocation of
make requires the proper parameter to build the correct set of derived objects.

22 CMU/SEI-90-TR-23

NSE manages multiple derived object sets by storing different sets of derived objects in sep-
arate internally managed directories. An NSE environment can contain a version of a set of
software sources, and several different variants of derived objects. Through parameters in
the activate or acquire commands, the user specifies which directory of derived objects are
seen by users and tools with the sources as shown in Figure 5-1. It is possible to construct
one version of a Makefile without parameterized path names that will build the correct set of
derived objects due to the environment managing the build context.

::::: foo.o foo.o

(all source files) (derived files for Sun 3) (derived files for Sun 4)

N S
N X /4

Activate Activate
or Aquire or Aquire
Variant = Sun 3 Variant = Sun 4
Ourprogram* Ourprogram*
Sources & Sources &
derived files for Sun 3 derived files for Sun 4

Figure 5-1: Source and Object Management

Parallel development on different variants may occur in two ways. First, a given environ-
ment may be activated at the same time by two different developers. Each developer can
specify a different variant during the activate command. When one developer checks-out a
file through VCS, the other developer can not modify it. When the developer checks-in the
file the updated file is immediately available to the other developer. The VCS commands in
this instance are serving as access control to the source files, and development on the two
variants must be more closely coordinated between developers. A second scheme for
parallel development occurs by creating child environments with the acquire command.
When each child environment is created or activated, the developer may request a specific
variant. The user and tools will access the sources and derived objects for only the re-
quested variant. Each child environment can then represent the development of a particular
variant. There is no file locking across child environments, and as such development can go

CMU/SEI-90-TR-23 23

on in each environment independently. If two developers simultaneously change shared
code in their respective variant environments, then the changes will be coordinated and
tested using the same acquire, reconcile and resolve procedures described in Section 4.3.

if a developer is forced by a failed reconcile to integrate changes specific to another plat-
form, it can be resolved by using a feature of environment variant activation. At activation
time, specific environment variables are defined which indicate which set of derived objects
are mapped into the directory structure. The C pre-processor commands #if and #endif can
be used to select appropriate sections of code based on the values of environment variables
set at activation. The textual merge editor that is invoked to help resolve such conflicts
makes it very clear which areas should be marked for selection by the pre-processor. Figure
5-2 shows how conflicting machine dependent code is pointed out, and Figure 5-3 shows °
how simple pre-processor commands can be inserted to resolve the conflict.

o

: 0.9 2. X%
fileresolve - /tap/fileresolve. al7482 (edited), dir: /u/B5b/mnt/downcy/tectl?

sain() . main()

printf("THE HELLO PROGRAM for Suné\n"); fntf("THE HELLO PROGRAN for Sun3\n®);
hr(();) larry();

moe(); |

+

&/% This is code added for Sund development ¢/
+ newiaprovedeos();

S printf(“faster and batter\n®);

¢
4/¢ and subroutine call to "m0e® no longer needed ¢/
*

*
*
*
) * g
shep(); H
} }
Merged Result
/u/¥5b/ent/douney/testi2/stooges.c
?ln() (1 of 1)
s
-'I‘:"::::'m:g;mm for Sun3 devalopment s/ Hotian [“‘“J E[Tote l
printf("faater and better\n®); Apply m m [m [—u—“ﬂ

/% and subroutine call to "moe" no longer needed ¢/

Scrolt @tock Qunlock
Unrssolved Diffs: 1 of 3

shep();
9 .

Figure 5-2: Conflict in Machine Dependent Code

24 CMU/SEI-90-TR-23

fileresnive

- Jtapstileresolve a17402 fedvted), doie: Ju/Bab/mnt/ downey/ tenth?

0

nin()

Intf(‘THE HELLO PROGRAM for Sund\n");

main()
11 printf(“THE HELLO PROGRAM for Suad\n®);

rg(), arry();
M/e This s code added for Sund development /
Nnewinprovedaos();
dprintf("faster and better\n®);
b s and subroutine call to “sce” no longer nesded /
;Mw(); ;hw():
Narged fesult
/u/95b/ant/dounay/testi2/stooges. c
?ln() (1 of 1)
#f Vhlzlllll'zsgrna PROC \n®)
intf("THE HELLO PROGRAM for Sund\n®); Fi1
printt ; .
#1f VARIANT==Sun3
K:‘::z(THE HELLO PROGRAM for Sun3\n®); Notion l:"ﬂ‘_j [Prov] [tote]
'larry()'. apply [‘Left] [Right] By Hand] ((Undo)
’
L]

¢ This is codl added for Sun3d developament ¢/
new i
pﬂn&f(‘hstﬂ' \ml better\n®);

/¢ and subroutine call to "mos” no longer needed ¢/

scroll @BLock Buniock
Unresolved Diffs: 8 of 3

Figure 5-3: Merge of Machine Dependent Code

Variants easily support parallel development when different sources are used to compose

different versions of the executable.

If a developer of one variant makes a change to a

platform-specific source file, the change will be propagated to other variants through the
acquire and reconcile procedures. A developer on a different platform will receive the
changed file upon resync or failed reconcile. He may choose to look at the file, to see if the
changes may indicate that analogous changes are needed for his platform. The developer
may also choose to ignore the file, since it is not compiled and linked for his target, and
proceed by marking it with the command merged.

CMU/SEI-90-TR-23

5.2. Primary Development and Adaptation

The use of variants in NSE can accommodate primary development for one platform, provid-
ing source for input to a secondary development effort for a different platform. In the rela-
tionship between the two efforts, the primary development can be viewed as the "master,"
while the secondary development is a "slave” to any changes or upgrades made in the pri-
mary development path. Advances in functionality may continue in the master environment,
at the same time target-specific changes are made in the "slave" environment. This ar-
rangement is best implemented with the "slave” environment being created as a child of the
primary development environment. The flow of fixes and changes travels from the "master”
environment to the "slave” environment via updates made with the resync command. Figure
5-4 depicts the relationship between the two work environments. Any machine dependent
changes made for the secondary target, do not need to be ported back, and integrated with
the primary development. Since a given environment may have more than one child envi-
ronment, a master environment may drive more than one slave environment.

Master

Acquire /

rosync cen ;.u.l.\m
K /subsyst! /subsys2
rosync d oo (Bumd

Slave - -+ lproduct

/7 \

/subsys1 lsubeys2
. (Sund)

Figure 5-4: Major and Dependent Development

If a slave environment does contain changes which will be useful to the master environment,
the semantics of the reconcile command impose some restrictions. First, the slave environ-
ment must be completely updated with any changes in the parent environment through a
resync command. Second, the entire sequence of changes in the slave environment will be

26 CMU/SEI-90-TR-23

propagated back to the master environment upon a successful reconcile. While it is useful
to have a mechanism to propagate change between environments, it is not possible to be -
selective about which changes should be moved and applied to the other environment.

A product release from the master environment for the primary platform will reflect the latest
advances. A product release for another platform made from the slave environment may lag
behind the primary development path in terms of functionality.

5.3. Parallel Development for Different Family Members

When development must proceed in a more parallel fashion for multiple target platforms,
NSE can take advantage of a traditional directory structuring scheme. Figure 5-5 illustrates
how the code that is common to all target platforms resides in one development subdirec-
tory. All code that is parameterized through preprocessor commands can reside in a sub-
directory labeled "combined.” These are both augmented by a subdirectory for each target
platform, which contains code specific to the platform, which may or may not have an equiv-
alent in code for other platforms. The root Makefile which invokes Makefiles in each sub-
directory should be parameterized to build only a selected platform. The root Makefile also
contains a target that will build all platforms in the case of a major release parallel to all
platforms.

Makefile
Ourprogram*

i \f:::ﬁ,m.,!g::f..,,

Figure 5-5: Directory Structure for Multi-Platform Source

CMU/SEF90-TR-23 27

Since NSE environments not only configure source code, but also derived objects and UNIX
directory structure, change in this type of software family can be easily managed. Figure
5-6 shows a hierarchy of environments. The top-most environment is set up to act as repos-
itory for the work on the entire software family. In the second level of environments, each
environment represents one of the targeted platforms. The third level of environments are
workspaces, where changes to common and combined code ¢an occur, in the context of a
specific platform inherited from the workspace’s parent. As shown in Figure 5-6, Program-
mer A can modify code common to all platforms, and code specific to Sun3 development.
Through the use of variants the second level of environments and their children are limited
to one variant of object code. Programmer A can view source code located in the Sun4

subdirectory, but by convention should not modify it, and is unable to derive Sun4 objects
from it.

Repository product
Level e \ \)
2N
Collection Level / \
/'(“' *"’" dop 004 p:\:::u piatform-dependent
!una/ \ / \NM

N\ |

Workspace Level

™ N N

Programmer A Programmer B * Programmer C
Sun 3 Workspace Sun 3 Workspace Sun 4 Workspace

Figure 5-6: Parallel Multi-Platform Development

The second level of environments would coordinate work from multiple child workspaces for
a particular platform. Changes to common or combined code, can be propagated to other
platforms by reconciling with the top-level repository environment periodically, and accepting
changes through resync from the top-level repository. Since a programmer is not to make
changes to subdirectories for other platforms, during a resync, changes in the other sub-
directories will be automatically accepted. As long as the programmer does not make
changes in another target's subdirectories, he will not have to merge any changes for anoth-
er target.

28 CMU/SEI-90-TR-23

The ability to view changes to target-specific code for other platforms may be useful, as it
can signal changes needed locally. However, it is possible to limit a working environment's
visibility to source and derived objects for only one platform through the logical structure of
the software system and the NSE object called a component. A component can represent
each logical partition of the system. If a software family is structured as described above,
there can be a common component, combined component, and a component for each target
platform. Each of these components serves to bundle the source, derived code and sub-
directory into one object. The commands which move objects between environments
(acquire, reconcile, and resync) all recognize and act upon components. As before, the
parent environment serves as the main repository. Child environments would acquire a
common componént, a combined component, but only one platform's component. Within
the child environment the sources for common, combined, but only one platform are avail-
able for reading and modification. The environment is also limited to the derived objects for
that platform through the specification of variant. In this way environment and component
hierarchy enforces the rule that no changes can be made to files specific to other platforms.
The reconcile and resolve of changes on common and combined code may proceed as de-
scribed in the previous paragraph, and platform-specific code can evolve totally independ-
ently.

If a product release for each family member is made from the top level environment in the
hierarchy, after each family member has reconciled, then the common code across all family
members will contain the same functionality. Releases for an individual family member,
made from the second level of environments in the hierarchy will reflect changes made for
that specific member. '

In summary, the use of the UNIX directory structure as shown in Figure 5-5 allows parallel
development to occur in a software family. NSE allows for the coordination of evolution of
the code that is common to all members of the software family. Using or not using compo-
nents to logically structure the system provides a choice in whether a developer can monitor
member-specific changes made for other family members.

5.4. Composition

A large system is often broken down into several subsystems which can evolve independ-
ently of each other during development and maintenance. A successful configuration man-
agement system will allow for this partitioning and also serve to support the composition of
the system at times of integration test and product shipment. The Rational Environment is
one such commercially available environment which provides the ability to construct a sys-
tem from different versions of subsystems [2]. A system is partitioned into subsystems in
such a manner as to minimize compilation dependencies between the subsystems. Each
subsystem may evolve its own set of versions independently. Different configurations of the
system are composed by selecting a version of each of the subsystems. At first inspection,
the transaction model implemented by NSE would seem to preclude composition. However,
through the use of environments, named revisions and control points, it is possible to com-
pose selected versions of subsystems into systems.

CMU/SE!-90-TR-23 29

If a software system can be partitioned such that the subsystems are minimally dependent
on each other, each subsystem can be maintained within its own environment. Each envi-
ronment would be created separately, with no parent-child hierarchy between the environ-
ments. Because the environments are not connected to each other, there is no migration of
changes between subsystems and the subsystems evolve independently of each other. In
order to be able to combine subsystems to perform system integration testing or system
product release there must be a coordination of each environment or subsystem’s control
points. A convenient way to structure the control points is to have one UNIX directory repre-
sent the system. The system directory should then contain a separate subdirectory for each
subsystem, which serves as the subsystem’s environment control point. Each subsystem
would populate its control point with the versions of its source, object and executable files
organized by subsystem revision. Figure 5-7 depicts system breakdown by subdirectory
and environment. A system can then be composed of one of each of the subsystems, by
activating in succession the desired revision of each subsystem’s environment. The unique
control point for each environment allows the subsystem contents of each environment to be
viewed together. The composition of a system can be tracked by an activation file that lists
the environments to be activated and the revision name of each environment. The activa-
tion file actually represents a version of the system, and as such can be named so as to
indicate a system version, and managed as an object external to the NSE.

wlproduct aalbroduct
W AN VAN
vl /' /" \
bar
. | aubsysi aubsysl (subsys2
Makefile Makefile
bar.c back.c
control point: control point:
«/product/subsys1 .../product/subsys2
Subsystem 1 Environment Subsystem 2 Environment

Figure 5-7: System Broken into Subsystems

Some degree of automation is possible in activating a series of environnments to compose a
system. Instead of the activation file merely containing a table, it can consist of a series of
activate commands. The activation file would then be an executable shell script. Below is

an example of such a script:
activate subsysteml -R Release3.4
activate subsystem2 -R Releasel.0
activate subsystem3 -R Released.O
activate subsystemd4 -R Releasel.2
activate subsystem5 -R Release2.6

-

30 CMU/SEI-90-TR-23

By executing the activation file, the composition of all the parts can be seen together in one
activated environment. When a named revision is specified with the -R flag, its subsystem
contents will be available in read-only format. This works well for composition from stable
environments, and is useful to preserve frozen compositions for release and later re-
creation.

During software development in the subsystem composition model it is usually necessary to
perform integration testing. Integration testing often leads to a need for modification of the
contents of subsystems to arrive at correct system behavior. It is possible to compose an
environment of both unchangeable and working versions of subsystems. The following ac-
tivation script represents a system consisting of two working versions of subsystems in the
context of three other unchanging subsystems.

activate subsysteml -R Release3.4
activate subsystem2
activate subsystem3 -R Released.0
activate subsystem4 -R Releasel.2
activate subsystemS

\
\
\
\

If a revision is not specified, the activate command defaults to the latest working version of
the environment. Due to the nature of the NSE Translucent File Service, only the last ac-
tivated environment in the list, if it is @ working environment, is available for write access. In
the above example only the subsystem found in environment subsystem5 would be avail-
able for read/write access. It is possible to modify working environments that appear earlier
in the activation script such as subsystem?2 in the above example. The user must create a
separate window and then activate the desired working environment from there. This can
be done at the same time the composition of environments is active. Changes made in the
separate window to the activated subsystem are immediately available in the composition
environment. In the example above, the developer will have the ability to ves checkout and
modify files for subsystem5 in one window, and concurrently modify files in subsystem2 if it
is activated in a second window. " If this is done in order to integrate a system, the system
may then be released by creating named revisions of the modified subsystems, and then
creating an activation file with the named re*isions of all subsystems. An activation file
which refers to named releases of all its subsystems is by default a frozen configuration of
the system.

In addition to the activation file which serves to represent a system, there will be a system
Makefile or build script, and a resuiting system executable. The system Makefile or build
script will serve to link together derived objects from each of the subsystems. A convention,
external to the Network Goftware Environment will be necessary to link and identify these
three files as important to one distinct instantiation of the software system. One such con-
vention is depicted in Figure 5-8. A subdirectory is created to the original UNIX directory
structure for each integrated system. Each subdirectory then contains the required activa-
tion file, build script and executable.

CMU/SEI-90-TR-23 31

audproduct
(subsysl (subsys2 (Release1.0 (Weorkingl.3
(Control points to Makefile Makefile (bulld script)
composable subsystems) Release1.0 Releasel.3 (activation flle)
product* product* {executable)

Figure 5-8: Management of System Composition

CMU/SEI-90-TR-23

6. Support for Distributed and Heterogeneous
Development

As the name indicates, NSE supports development in a network environment. In this section
we examine in detail the support available through NSE for development in a distributed and
heterogeneous network environment. First, we examine NSE’s support for development in a
network of Sun workstations. Then, we discuss the support possible through NSE for devel-
opment on workstations other than Suns.

6.1. Distributed Development on Suns

Sun workstations come in three flavors: the Sun3 family based on the Motorola 68k proces-
sor, the Sun4 family based on the SPARC processor, and the Sun386i family based on the
Intel 386 processor. Workstations from these three families can be interconnected. They all
run the SunOS version of UNIX including NFS. NSE is available as a product on all three
families.

6.1.1. Homogeneous Sun Network

NSE maintains source files and derived files in environments. A single environment con-
tains a sequence of releases, that is, a version sequence of a configuration of files
(collection of files in a directory structure). A particular configuration of files is accessible by
activating an environment. As a result of the activation, the files and directories of the cho-
sen configuration are made available at a point in the file system, known as the control
point. Different environments and their configuration versions can have the same control
point. Two environments can be activated on the same control point. The result is that two -
different processes (and all their subprocesses) see different versions of files if the configu-
rations differ. Thus, the activation of an environment has the effect of a file system mount on
a per process basis. '

The files contained in an environment actually reside in a root directory which is also speci-
fied at environment creation time. This root directory can be anywhere in the file system,
whether that is on a local disk or a file server accessible through NFS. Users are not aware
of the physical location of the files. Access to these files is transparently provided through a
NSE server. This server is similar to a NFS server, and understands the way the physical
files are organized by not duplicating files that have not changed between configurations.

The names of environments are registered with the Sun network name server yp. Thus, they
are known throughout the network and environments can be activated on any machine the
name server responds to and that has been configured to run NSE.

The files contained in environments can be physically located anywhere in the network and
can be made accessible anywhere in the network. The network may be configured such that
all workstations access files from one or several file servers, or files may be located on local

CMU/SEI-90-TR-23 33

disks. This allows for load balancing of file storage and file access. NSE specifically sup-
ports load balancing in two ways. First, NSE provides administrative functions to relocate
the physical location of the files of an environment or a variant within an environment.
Relocation may be necessary because the file system storing an environment becomes full,
or because it is desirable to spread file access across several disks or file servers. Second,
NSE allows environments to be self-contained by having copies of all files including files that
have not changed between configurations. Normally, the NSE server may have to check the
root directory of several parent environments to locate a file due to the fact that files by
default do not get copied if they are not changed. For self-contained environments, file ac-
cess is guaranteed to be only to the physical location of its own root directory. By locating an
environment that represents the work area of a user as a self-contained environment on a
local disk network, file access is minimized.

In a network consisting of two local area networks (LANs) and a lower bandwidth bridge
connection, but configured as a single network file system, network traffic across the bridge
can be recuced by making sure that the physical location of the files of an environment are
on the same LAN partition as the majority of environment activations. This is done by creat-
ing a child environment that is self-contained. Its root directory can be located on the same
partition as the majority of activations by executing acquire with the -R option. It is also
possible to default to all local copies of files with the -C option of the acquire command.
This overrides the default which is making physical copy only after the user indicates intent
to modify the file with the ves checkout command.

6.1.2. Heterogeneous Sun Network

In a heterogeneous Sun network, workstations from different families of processors with dif-
ferent instruction sets coexist. Because of the different instruction sets, different executables
are necessary. NSE takes these differences into account both for code compiled from
source code, and for the executables of tools.

NSE supports the derivation of different sets of objects from the same source. Typically, the
derived object variants are the three Sun machine architectures (as indicated by the opera-
tion /bin/arch), but other variants can be defined as well. When an environment is activated
the derived files for one variant are made accessible under the control point together with
the source files. Newly created derived files are added to the set of derived files of the
activated environment variant. Only one set of derived files is accessible within one activa-
tion. By default, the variant is that of the architecture of the workstation on which the user is
activating the environment. However, the user can specify an alternative variant at activa-
tion time. This allows a user to reside on a machine of one Sun family, (the host), and build
code for a second Sun family, i.e.,(the target), through cross compilation. The executable
code, however, can only be invoked and tested on the Sun family for which it was compiled.
This can be done by activating the environment on a machine of the target architecture.
The activate command will select the variant of code based on current machine architecture,
and the corresponding derived objects will appear at the control point.

34 CMU/SEI-90-TR-23

NSE supports transparent selection of tool versions through the concept of sets of ex-
ecutable tools called execsets. An execset contains particular versions of tools (or pointers
to tool versions). Execsets are characterized by the host and target architectures they are
intended for. For example, in a mixed Sun3 and Sun4 network there may be a separate
execset for tools executing on Sun3s generating code for Sun3s, tools executing on Sun3s
cross-compiling to Sun4s, and the equivalent tools executing on Sun4s (as illustrated in
Figure 6-1). Such groups of execsets are referred to as execset families.

Sun 3 Host Sun 4 Host
68k 68k
ts::‘git Compiler Cross
Compiler
SPARC SPARC
Sun 4
target Cross Compiller
Compiler

Figure 6-1: Family of Executable Tool Sets

Execset families do not only distinguish between different host and target architectures, but
also between different operating system versions for both the hcst and the target. Different
versions of a tool may be dependent on the particular version of an operating system (e.g.,
compiler versions for SunOS 3.5 and for SunOS 4.0.3 whose executables are not
compatible). In this case the execset facility, if set up correctly, will provide for automatic
selection of the appropriate tool version based on the operating system version on the host.

Execset families are associated with environments, and can be associated with more than
one environment. At environment activation, NSE selects an execset from the associated
family based on host and target architecture and operating system version. The tools con-
tained in the execset are transparently mapped into the system directories where the tools
normally reside. For this transparent mapping, NSE uses the same per process mount capa-
bility as is used for making source and derived files of the environment transparently acces-

CMU/SEI-90-TR-23 35

sible. The host architecture is determined by the machine the environment activation is per-
formed on, and the target architecture is the architecture of the environment variant being
activated. Thus, as a result of the environment activation the appropriate compiler or cross
compiler appears in the respective system bin directory. Users and build facilities do not
have to be concerned with selection of the correct tool version.

Execsets are not restricted to containing only executables of tools. They can also be used
to provide transparent access to auxiliary files necessary for system build, but not managed
as source files in environments. Examples are UNIX system include files and system library
files. Such files may not only differ from architecture to architecture, but aiso from operating
system version to operating system version. The distinction of operating system versions for
the target machine allows include files or libraries for SunOS 4.0.3 to be made availabie
transparently to tools executing on SunOS 3.5.

6.2. Development on a Heterogeneous Network

Often, software development facilities face the problem of managing code production on dif-
ferent vendor equipment (Sun, Dec VAX under ULTRIX and VMS, Apollo, etc.). Although NSE
is currently only available on Sun workstations, development for and on machines from
other manufacturers can be supported to various degrees. The problem with lack of availa-
bility of NSE on non-Sun machines is that files in an activated environment are not directly
accessible, although those machines may be connected to Suns through a network and
have access to files via the Network File System (NFS). One reason is that the NFS server
handling client requests from non-Sun machines is not aware of an activated environment.
In this section we discuss three development scenarios that can be directly supported with
NSE as it is and indicate how NSE can be supplemented to further support non-Sun equip-
ment.

6.2.1. Cross-Development on Suns

The first scenario represents software development on Sun workstations for non-Sun equip-
ment. This scenario assumes that developers work on Suns, that is, they activate environ-
ments, edit files, and compile and link them on Suns using a cross-compiler and cross-
linker. The derived files are kept in a non-Sun target variant, and the cross-development
tools are transparently made available through the appropriate execset (see previous

section). '

Since the files in an activated environment are only accessible by machines that have NSE
support, special steps must be taken to make the executables available on the target ma-
chine. One alternative is to copy the executables to the file system of the target machine by
running a file transfer program from within the activated environment. A second alternative
is to copy the executables into a directory that is accessible via NFS by both the developer's
workstation and the target machine.

36 CMU/SEI-90-TR-23

Testing the software on the target machine may require the use of a source level debugger.
If the debugger is a cross-development tool, (can execute on a Sun and debug a program
on a different target), it can run within the activated environment to access the source files. If
the debugger can run only on the target, the source files will also have to be made available
by transfer to the target file system or into an area accessible by NFS.

6.2.2. Remote Processing on Target Machines

The second scenario reflects developers editing on Sun workstations, but compilation and
linking are being done on the target machine. In this case, the developer edits sources in the
activated environment on a Sun workstation. Files necessary for compilation and linking are
moved to the target machine or kept in a file system area accessible by the target machine
through NFS. This can be accomplished through a tool invocation script (sometimes referred
to as envelope), which will make the files accessible and invoke the tool on the remote ma-
chine. This envelope can also retrieve a copy of the tool output into the activated environ-
ment.

In case of C programs, the preprocessor of the C compiler can be run on the Sun, expand-
ing out all macros and include statements. The execset mechanism would be used to pick
up the include files appropriate for the target machine. As a result only a single file needs to
be made accessible to the compiler running on the target machine.

6.2.3. Remote Development

The third scenario uses NSE and Suns as primary development facilities and performs de-
velopment and adaptation for non-Sun targets on those machines. In this scenario the soft-
ware is initially developed on Suns under NSE. As the software has to get ported, adapted,
and tested on a non-Sun machine an environment is created on the Sun as a child of the
environment containing the software to be worked on. This environment acts as a
placeholder for the work on the non-Sun machine. The software is copied from this environ-
ment toa file system accessible by the non-Sun machine. Developers work on it using the
tools on that machine. To save the work being done on the target machine the developers
copy it back into the environment on the Sun representing this target work, and use the NSE
preserve command. Once the work on the target environment is completed, the changes
can be merged with other development on the software utilizing NSE support (through the
reconcile command).

This last scenario requires the least effort for using NSE in the development of software for
non-Sun machines. NSE is used as a repository and it provides support for controlled merg-
ing of concurrent changes. In the other two scenarios NSE is also used to support the
workspace of individual developers, but tools are either required to support cross-
development or part of the workspace is replicated on the target machine for tools residing
only on that machine.

"CMU/SE90-TR-23 37

CMU/SEI-90-TR-23

7. Conclusion

In this report we have examined the SCM support available in the Sun Network Software
Environment (NSE) and explored the impact of its advances on three problem areas in soft-
ware development. Sun NSE was chosen as a representative for several commercial envi-
ronments that have recently become available and offer a number of advances over com-
mon practice in the area of support for developers. First, it offers SCM in a transparent
manner, which makes it easy to use and allows for smooth transition from native UNIX as a
development environment. Second, through the concept of environment, NSE provides a
transaction-style usage model, which naturally supports developer workspaces, but has
some limitations if used to support propagation of change between software family mem-
bers. Third, NSE supports development in a heterogeneous network, offering a solution to
managing multiple variants and versions of tools present in one software development envi-
ronment. Finally, NSE's solutions demonstrate progress towards integrating support for
SCM as both a control discipline and a developer support function.

One of the key elements of NSE's SCM services is its ability to transparently map the repos-
itory into the UNIX file system. This transparency eliminates the need for users to deal with
two data management facilities, the repository and the file system, and with the transfer of
information between them. Users and tools interact .with familiar objects, directories and
files, while the system maps them into a repository management scheme. Directories are
used for structuring of system components into aggregates both in the repository and in the
work area. All file system activity in the work area, (the mapped repository) is tracked
through NSE. This allows NSE to manage derived files, support multiple variants of derived
files for the same set of sources, and a version history local to the work area. NSE pre-
serves the history of aggregates; it manages and evolves versions of configurations. Version
identification of individual files is performed automatically by NSE relative to a selected con-
figuration version. The complexities of versioning a large number of files and selecting ver-
sions from a variety of version graphs is hidden from the user. In summary, transparency
through the repository mapping mechanism is a key facilitator for supporting developers in
their work area and for bringing UNIX-based software development under SCM control with
little additional effort.

The support for management of developer. work areas leads to a transaction style usage
model. This model, in a natural way, supports developers evolving a system from a base-
line to a new configuration. The transaction model also introduces the notion of scope to
change, in that a work area is isolated from other change, and local changes are not visible
until promoted. The model also offers control of work areas, is a basis for coordination of
concurrent change, and allows promotion of changes as aggregates. It moves away from
version graphs for individual files with revisions and branches, to evolution of system config-
urations, possibly in variants, along several development paths. A team of developers per-
form each step in the evolution of the configuration as a transaction. A transaction can
reflect a task that requires modification to a number of components. Changes by team
members are coordinated through optimistic transactions, (changes are not synchronized
through a priori locking), but update conflicts are detected at commit time, at which time the

"CMU/SEI90-TR-23 , 39

conflicting transaction is required to merge the changes of the first transaction with local
changes before proceeding. NSE’s transactions can be extended with locking schemes. The
semantics of a successfully committed transaction are a serialization of changes. In the
case of optimistic transactions consistency is maintained through the forced merge of con-
current changes.

NSE supports a pure transaction model. This means that the function of a repository is ac-
complished through a set of non-terminating transactions. While the forced merge of
changes in concurrent transactions is appropriate for supporting team development, it has
shortcomings as a repository function. As was illustrated in NSE'’s support for evolution of a
software family, the transaction model forces propagation of change to follow the transaction
hierarchy, and change can flow up the hierarchy only when changes in the parent have
migrated down and are merged in. This limits the degree of independent development pos-
sible even if a system is well partitioned. It also prevents the ability to migrate specific
changes between development paths. The transaction model is one usage model that we
have observed in recent commercially available software development systems. A future
report will discuss the benefits and limitations of all three basic SCM models and the poten-
tial of combining them to overcome limitations.

NSE makes use of the transparent mapping mechanism not only to provide access to the
repository and manage the work area of developers, but also to manage access to different
tool versions in a heterogeneous computing environment. In a manner that is similar to ver-
sions of files being transparently accessible in the file system, versions of tool sets are made
accessible in the file system. The tool set version is automatically selected based on host
and target architecture and operating system, and on the version of the files the tools get
applied to. This automation improves the consistency of the files maintained by NSE.

NSE does not offer a complete SCM solution. The set of SCM services offered by NSE is
limited to SCM support for developers. However, improvements in SCM support for devel-
opers are important in order to bridge the gap between SCM as a control discipline and
SCM as a support discipline. SCM as a control discipline, emphasizing the management
aspect, controls the product through a repository and the change process through formal
change requests and authorizations. Tool support for this aspect of SCM is often perceived
as intrusive as it does not aid developers in their day-to-day work, but presents additional
burden. SCM as a support discipline extends SCM concepts into developers’ work areas,
providing stability of workspaces by controlled isolation from change, coordination and con- .
trolled propagation of change. By providing these benefits to developers and by realizing
that different degrees of SCM control are necessary for different part of the development
process, SCM will become a mors accepted part of the software process.

40 4 CMU/SEFS0-TR-23

Appendix A: Glossary of Terms

This glossary is provided to define some software configuration management terms and Sun
Network Software Environment terms that are used freely throughout the text of this report.
Commands are provided in italics.

acquire (NSE)

activate (NSE)

artifact

branch

- bootstrap (NSE)

An NSE command that obtains the latest revision of objects from a
parent environment for use within a child environment.

An NSE command that readies an NSE environment for use by access-
ing the virtual file system associated with that environment. [4] This
causes a version of source, derived objects, and execset containing
tools to become available to a developer at a designated point in the
UNIX file system.

Any of many different kinds of objects that are used to build a software
system, such as: source code files, object code files, executable files,
and documentation files.

A development path consists of a series of configurations, one version
following from changes to a previous version. A branch is the point
where one version of the configuration gives rise to two or more simulta-
neous versions. For example, if a system is released, it must be re-
creatable in order to track and fix reported errors. However, while wait-
ing for customer error reports, developers can begin adding changes re-
quired for upgrades along one development path. When an error report
comes in, the correction should be applied in a separate development
path, also directly derived from the release version. At this point there
are two branches in the development path.

The NSE process of putting a UNIX file and directon;y hierarchy under the
control of NSE. [4]

change control board .

change request

check-out/check-in

child environment

A panel that may be comprised of product management, software devel-
opment representatives, quality assurance, and/or customers who are
interested in the function of a software system. The panel decides how
the software system will evolve. Usually tasked with responding to
change requests and determining whether those request are in line with
the implied or stated function of the software system.

A method of communicating dissatisfaction with the operation of a soft-
ware system to those in control of modification of the software system.
In most common practice it is a form asking the software system user
for details of the particular problem.

A method of coordinating change to the artifacts of a software library.
When an artifact is checked-out it typically becomes unavailable for
check-out by another developer. When the artifact is checked-in it be-
comes available for check-out by others.

An NSE environment that was created from an existing environmenit. it
contains a virtual copy of all of the .existing environment, or it may con-

"CMU/SEI90-TR-23

41

tain a virtual copy of a designated component from the existing environ-
ment. If a file is edited in a child environment an actual copy of the file
is created.

component A portion of a software system that contains one logical subdivision of
the system. A given software system may be seen as composed of its
various components.

component (NSE) An NSE object that is a group of related development objects that con-
stitute a functional unit. A typical low-level component consists of a set
of objects: an executable program plus the source, include, object and
library files necessary to compile and link the executable program. A
component can also include the program’s design documentation, test
data, and a test driver. Thus, a component gathers into a single unit
everything needed to modify a functional piece of the larger system.
Higher-level components group lower-level components together;
usually, they correspond to subsystems or large programs. [4]

computing environment
Facilities for the development and operation of software comprised of an
environment framework (or kernel) and a collection of tools.

configuration Cne instance of a software system made distinguishable from another
instance by the different versions of one or many of its components.

control point (NSE) A UNiX file system directory specified at the time of creation of an envi-
ronment where objects managed by NSE will appear when the environ-
ment is activated.

cross compilation The creation of machine code for one computer architecture by compil-
ing the source code on a architecture. The machine where the compi-
lation occurs is the host. The machine where the compiled code is to
execute is the target.

derived object Any file which is produced when a tool processes input. The derived
object is said to depend on the input files to the tool.

development path A series of revisions to a software system are related in that they move
towards a stated goal. For example, a given development path may
contain all the error corrections the customers requested. Another de-
velopment path may contain a series of planned upgrades that are to be
present in the next product release.

environment (NSE) An NSE object that is an individual workspace for developers that pro-
vides isolation, configuration management, and team coordination sup-
port.

execset or executable set (NSE)
An NSE structure that is associated with an environment and a variant
of the environment that provides a stable set of executables necessary
to deriv2 the objects found in the variant.

execset family (NSE) .
A group of NSE execsets that contain the same tools and are associ-
ated with an environment. Each member of the execset family is asso-
ciated with a particular variant of the environment and contains the tools
to produce the object code contained in the variant.

42 CMU/SEI-90-TR-23

exit (NSE) An NSE command that closes an active environment by stopping the
Translucent File Service. When an environment is active its files are
accessible at the control point. Upon exiting, the contents of the envi-
ronment no longer appear under the control point.

file (NSE) An NSE object that corresponds to a UNIX file. It may contain source
code, and is recognized by NSE as a managed object; it may be derived
from source code, and is recognized and managed as a derived object.
It may contain any form of input data that is processed by a tool, inciud-
ing text or build scripts.

host The computer system and operating system on which a program is
compiled. See cross compilation and target.
library The primary source of software artifacts to be evolved (i.e., retrieval of

artifacts is a common operation). Often artifacts contained in the library
are limited to source code. A historical record of artifacts is maintained
in the form of sequential revisions and through branches in the revision
graph.

lock (NSE) An NSE command that is applied to an environment so that only the
current user has write access to the environment’s contents. A Jock al-
lows a user to make changes to an environment that has children.

make A UnNix utility that performs a minimum recompilation based on the time
- stamps of source code files and derived object files. Make takes as
input a file that describes derivation rules. The default name for this file

is "Makefile.”

Makefile A file used by the UNiIx utility make, that contains rules for the produc-
tion of a derived object or set of derived objects.

merge A procedure whereby one version of a software artifact is created from

two separate versions. Usually the two versions evolved from a com-
mon ancestor.

merged (NSE) An NSE command used to declare conflicts resolved in objects that the
resync or acquire commands reported as conflicting. Conflicts are re-
ported when an object has changed in both a parent and a child envi-
ronment. -

nseenv create (NSE)
An NSE command that will establish a new, empty NSE environment.
The bootstrap command calls this ccmimand to create an environment
that the bootstrap command populates with existing sources and com-
ponents. :

optimistic development
A development style for team programming that is characterized by al-
lowing many changes to the source code to occur in parallel, and relying
on a later collection and merge of the work. There is no locking, and
conflict of changes is detected at merge time.

parent environment (NSE)
An NSE environment which is virtually duplicated by the creation of a
child environment. Once a child is created the contents of the parent
environment can not be accessed for change from within the parent en-
vironment without first locking the parent environment. All change
should be propagated to the parent from child environments.

CMU/SE90-TR-23 43

platform

RCS

reconcile (NSE)

release

repository

resolve (NSE)

resync (NSE)

revision

revision (NSE)

A term referring to a computer system. The computer system is charac-
terized by the hardware type, the operating system and version it is run-
ning, and possibly the window system and version.

Revision Control System, typically available on the UNIX operating sys-
tem. It is a configuration management tool based on a software library
which allows developers to coordinate change through check-in and
check-out procedures. The tool maintains the changes that were made
to create the current file and can re-create any earlier version of the file
by reversing the changes. It also provides the ability to tag versions of
files with some attributes.

An NSE command that delineates the differences between the hierarchy
of objects in a child environment and its parent environment. |If there
has been no change in the parent environment since the virtual dupli-
cation in the child, the changes present in the child are moved to the
parent environment.

A version of a software system made available to a larger group of
users.

The place where the software artifacts are kept in their online form. Its
functions are modeled after those of a librarian; it is the gatekeeper of
project products. Artifacts are typically created and modified outside the
realm of the repository.

An NSE command that merges conflicts that arise when the same ob-
ject has been simultaneously modified in both a child and parent envi-
ronment. The confiict is detected when a child environment returns its
changes to the parent, or when a child environment tries to update to
the latest changes in the parent.

An NSE command that updates the objects in a child environment with
the corresponding objects in the parent environment.

A snapshot of the current state of a software system; it usually differs
from other revisions due to changes made in the source code, or by the
tools used to produce derived objects.

A snapshot of the current state 6f an environment that is retrievable at a
later time if necessary for bug fixes or support consultations. A revision
can include a copy of the tools used to build the revision’s object files,
ensuring that the user can reliably recreate object files despite the in-
stallation of new tools. [4]

root directory (NSE)A UNIX file system directory specified at the time of creation of an envi- -

SCCS

ronment where NSE controlled objects actually reside. The Translucent
File Service makes the objects residing here, appear under the control
point when the environment is activated. Objects created in the envi-
ronment are transparently stored by the Translucent File Service.

Source Code Control System, typically available on the UNIX operating
system. It is a configuration management tool based on a software
library which allows developers to coordinate change through check-in
and check-out procedures. It maintains the original version of a file.
The tool also stores the changes that were made to create successive
versions, and retrieves the latest version by re-applying the changes.

CMU/SEI-S0-TR-23

snapshot

software evolution

software family

A retrievable picture of a software system as it exists at some point in
time. The contents of files, derived objects, system structure, and logi-
cal structure are all preserved.

The series of changes that a software program goes through from initial
design through implementation and even after release as a completed
product.

A collection of programs with essentially the same functionality. Mem-
bers of the family may differ in alternative implementations of certain
components or may represent adaptations to differences in the comput-
ing platform, such as different window systems or operating systems.
The software may be maintained as a single set of source files, from
which alternative executables are generated, or as alternative source
files, from which a particular family member is produced by selection
and composition.

sub-environment (NSE)

target (NSE)

target

transaction model

An NSE environment that was created as a child of an existing environ-
ment. At the time of creation it will receive a virtual copy of the contents
of the existing environment. Any changes made in the sub-
environment, may be returned to the environment it was copied from
with the NSE reconcile command.

An NSE object that represents the composition structures in a Makefile.
It groups all the objects needed to compose an artifact as indicated in a
Makefile, so that they may be operated on as a group by NSE com-
mands. .

The computer system and operating system for which a program is
compiled. See cross compilation and host.

A method for the configuration management of evolving source code
that is characterized by a central repository containing a consistent ver-
sion of the software system. The configuration is upgraded by: (1) cre-
ating a transaction containing a software object from the central repos-
itory, (2) locking the object in the central repository, (3) modifying the
copy, (4) replacing the object in the repository with the modified copy,
and (5) unlocking the object in the repository. Depending on the soft-
ware configuration management implementation, a software object may
be a single source code object such as one file, or an entire configu-
ration of source code modules.

Translucent File Service (TFS) (NSE)

unlock (NSE)

variant (NSE)

An NSE mechanism that allows a per process mount of the UNIX file
system. The TFS provides the ability to see the contents of an environ-
ment at the control point when the environment is active.

An NSE command that applies to an environment that was previously
accessible for write by one user. Unlock releases the environment to
accept changes from child environments or if there are no children it
releases the environment for change by a different user.

is an NSE map that defines a correspondence between a set of object
names and a set of object values (contents). The term is commonly
used to encompass both the name-to-value map and the object editions

CMU/SEF90-TR-23

45

VCS (NSE)

specified by the map entries. When an environment is activated, by de-
fault the variant that matches the machine’s architecture and operating
system release is also activated. [5] The object editions specified by the
map entries are typically derived objects.

See Version Control System.

ves checkin and ves checkout (NSE)

NSE commands that are part of the Version Control System. The
checkout command locks a file for write access by one user within an
environment. The lock is local to only the current activated environ-
ment. The checkin command creates a local copy that is frozen and
stored within the environment. Checkin command also prompts the
user for a comment about the change and returns the file to read-only
status for all users. Within a workspace, ves checkout and ves checkin
are similar to RCS and SCCS in that it uses a delta mechanism to store
the changes between successive versions of the object in the environ-
ment.

Version Control System or VCS (NSE)

An NSE mechanism that records the history of changes to all objects
under its controf in an NSE environment. VCS stores the fatest version
of a file with markers to indicate how it was created from previous ver-
sions. Previous versions can be created by removing the applied
changes. It is also a mechanism that provides file-locking with an envi-
ronment, that prevents simultaneous editing of the same file if the same
environment was activated by two developers.

working environment (NSE)

workspace

An NSE environment that is typically a child environment that serves as
a private workspace for a developer to make and test changes to a con-
figuration. A working environment is typically at the bottom of an envi-
ronment hierarchy with no children itself.

The place where software artifacts are modified and tested online. It is
generally easily accessed by a developer, and historically is separate
from a library or repository area. Changes made in a workspace are
particular to that workspace and must be specifically propagated to a
library, repository, or separate workspace.

CMU/SEI-90-TR-23

Relerences

1

(2]

31

(4]

[5]

[6]

Aide-De-Camp Software Management System User Guide
Version 7.0 edition, Software Maintenance and Development Systems, Inc., P.O.
Box 555, Concord, MA 01742, 1989.

Feiler, Peter H., Dart, Susan, and Downey, Grace.

Evaluation of the Rational Environment.

Technical Report CMU/SEI-88-TR-15, ADA198934, Software Engineering Institute,
Carnegie Mellon University, July 1988.

Leblang, D.B., and Chase, R.P., Jr.
Parallel Software Configuration Management in a Network Environment.
IEEE Software 4(6):16-27, November 1987.

Network Software Environment: Reference Manual
Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043, 11 March
1988.

Courington, William.
The Network Software Environment.
Technical Report, Sun Microsystems, Inc., 1989.

Schwanke, R.W., et al.

Configuration Management in BiiN SMS.

In Proceedings of the 11th International Conference on Software Engineering, pages
383-393. May 1989.

"CMU/SEI-90-TR-23 . — 47

CMU/SEI-90-TR-23

UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE .
REPORT DOCUMENTATION PAGE

19. REPORT SECURITY CLASSIFICATION 10. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
25 SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPOART
N/A APPROVED FOR PUBLIC RELEASE
5. OECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A
s PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
CMU/SEI1I-90-TR-23 ESD-90-TR-224

(11 applicable)
SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. ADORESS (City, State and ZIP Code) = 70. AOORESS ¢(City; Stale and ZIP Code)

6s. NAME QF PERFORMING ORGANIZATION rb. OFFICE SYMBOL 75. NAME OF MONITORING ORGANIZATION

CARNEGIE MELLON UNIVERSITY - ESD/AVS o
PITTSBURGH, PA 15213 | HANSCOM AIR FORCE BASE
.4 HANSCOM, MA 01731
8s. NAME QF FUNDING/SPONSORING ';b OFFICE SYmMBOL MEQCUREMEN'I’ INSTRUMENT IOENTIFICATION NUMBER
ORGANIZATION (f epplicedie) F
SEI JOINT PROGRAM OFFICE ESD/ AVS 1962830€0003
8¢c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO,

PITTSBURGH, PA 15213

11. TITLE (Inciude Security Clasmficotion) 63752F N,A N/A N/A

TRANSACTION-ORIENTED CONFIGURATION MANAGEMEN']L: A CASE STUNY

12. PERSONAL AUTHORIS)

Peter Feiler and Grace Downey
13a TYPE OF REPORT 130, TIME COVERED 14. DATE OF REPORT (Yr., Mo., Dey) 18. PAGE COUNT

FAOM T0 November 1990 53 pp.
I —
16. SUPPLEMENTAAY NOTATION
COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessery end identify by dlock number)
|_GRoue SUs. GA. configuration management transaction

Sun Network Software Environment software evolution
software development environment '

19. ABSTRACT (Continue on reverse if necessary end identify by dlock number)
Software configuration management (SCM) is a key element of the software development
process. A number of new configuration management techniques in commercial SCM tools
and environments with SCM capabilities have been observed. This report illustrates
some of the advances in SCM concepts by example of a particular commercial system:
the Sun Network Sosttwar Environment (NSE). NSE embodies a transaction model of con-
figuration management. In order to demonstrate the capabilities and limitations of
the transaction model, NSE is applied to three problem areas for configuration manage-
ment: adaptation for parallel development and team support, development and maintencnce
in software families and development in a distributed and heterogeneous network.

20. OISTRAIBUTION/AVAILABILITY OF ABSTRACT 21. ASSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITED I same As aer. (D oTic usens (B UNCLASSIFIED, UNLIMITED DISTRIBUTION
228 NAME OF RESPQNSISLE INOIVIDUAL 22n TELEPHONE NUMBER 22¢c. OFFICE SYMEOOL

-JOEN S. HERMAN, Capt, USAF (Include Ares Coda)
: AN, Capt, US 412 268-7630

. I
OD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OSSOLETE. UNLIMI
' SECURITY CLASSIEICATION OF THIS PAGR ‘

